Supercharger: Types, Working, Advantages, and More
What is Supercharger?
A supercharger is a device that is used to increase the air
intake pressure in an internal combustion engine. It is typically used in
high-performance engines to increase their power output.
A supercharger works by compressing the air that enters the
engine, which allows more air to be forced into the combustion chamber. This
increased air intake, combined with the appropriate amount of fuel, creates a
more powerful explosion in the engine, resulting in more power output.
There are two main types of superchargers: positive
displacement and centrifugal. Positive displacement superchargers work by
pumping a fixed amount of air with each revolution, while centrifugal
superchargers use a high-speed impeller to compress air and force it into the
engine.
Superchargers are typically powered by a belt or chain that
is driven by the engine. They can be added to an existing engine as an
aftermarket modification, or they can be built into the engine from the
factory.
While superchargers can significantly increase the power
output of an engine, they can also have some drawbacks. They can be expensive
to install and maintain, and they can increase fuel consumption and engine
wear. Additionally, the increased heat generated by a supercharged engine can
require additional cooling measures to be put in place.
How are The Superchargers Invented?
The first supercharger was invented by German engineer
Gottlieb Daimler in 1885, just a few years after he and his partner, Wilhelm
Maybach, built the world's first gasoline-powered internal combustion engine.
Daimler's supercharger was a rudimentary device that used a belt-driven
compressor to increase the intake air pressure in the engine. The supercharger
was used to increase the power output of the engine in Daimler's early
automobiles.
In the years that followed, other inventors and engineers
continued to refine and develop the supercharger. One of the key developments
was the invention of the Roots-type supercharger by American inventors
Philander and Francis Roots in the late 1800s. The Roots-type supercharger uses
two rotating lobes that trap air and move it from the intake to the exhaust
side of the engine.
Another important development was the invention of the
centrifugal supercharger by Swiss engineer and inventor Alfred Buchi in the
early 1900s. The centrifugal supercharger uses a high-speed impeller to
compress air and force it into the engine.
Superchargers became more widely used in the 1920s and
1930s, particularly in racing and high-performance applications. They were used
in aircraft engines during World War II and in post-war muscle cars.
Today, superchargers are used in a wide range of
applications, from high-performance sports cars to heavy-duty trucks and even
in some marine engines. They continue to be refined and improved upon, with new
materials, designs, and technologies being developed to increase their
efficiency and performance.
Types of Superchargers
There are two main types of superchargers: positive
displacement and centrifugal. Here's a brief overview of each type:
- Positive
Displacement Superchargers: Positive displacement superchargers deliver a
fixed amount of air per revolution, regardless of engine speed. They work
by using a pair of meshing rotors, lobes, or screws to trap air and move
it from the intake to the exhaust side of the engine. This type of
supercharger provides excellent low-end torque and instant throttle
response, making it ideal for street and drag racing applications.
Examples of positive displacement superchargers include Roots, twin-screw,
and screw-type superchargers.
- Centrifugal
Superchargers: Centrifugal superchargers use a high-speed impeller to
compress air and force it into the engine. They work by drawing in air
through a duct and spinning it rapidly inside a compressor housing. As the
air is compressed, it is forced into the engine through an intercooler and
intake manifold. Centrifugal superchargers provide more power at higher
engine speeds and are ideal for high-performance, track-oriented
applications. Examples of centrifugal superchargers include ProCharger,
Vortech, and Paxton superchargers.
Both types of superchargers have their advantages and disadvantages, and the choice between them depends on the specific application and performance goals of the engine. Other factors to consider when selecting a supercharger include cost, ease of installation, reliability, and compatibility with other engine components.
Working of a Supercharger
The basic working principle of a supercharger is to increase
the amount of air entering the engine, which results in a more powerful
combustion process and an increase in power output. Here's a brief overview of
how a supercharger works:
- Intake:
The supercharger draws air from the outside through an intake duct and
filter.
- Compressor:
The air is compressed by a compressor, which is typically a belt-driven or
electrically powered device. Positive displacement superchargers use two
rotors, lobes, or screws to compress the air, while centrifugal
superchargers use a high-speed impeller to compress the air.
- Intercooler:
The compressed air is then passed through an intercooler, which cools it
down before it enters the engine. This helps to increase the air density
and improve combustion efficiency.
- Intake
Manifold: The compressed and cooled air is then delivered to the engine's
intake manifold, which distributes it evenly to each of the engine's
cylinders.
- Combustion:
When the air mixes with fuel in the combustion chamber, it creates a more
powerful explosion, resulting in increased power output and acceleration.
Overall, the supercharger helps to improve the engine's
performance by increasing the amount of air that enters the engine, resulting
in more efficient combustion and more power. Superchargers are commonly used in
high-performance applications, such as racing and muscle cars, and can provide
significant gains in horsepower and torque.
Applications of Superchargers
Superchargers have a wide range of applications in the
automotive industry, as well as in other fields. Here are some of the most
common applications of superchargers:
- Automotive:
Superchargers are commonly used in high-performance cars, trucks, and SUVs
to increase horsepower and torque. They are also used in racing
applications, such as drag racing, road racing, and off-road racing, to
provide an extra boost of power and acceleration.
- Marine:
Superchargers are used in marine engines to provide extra power and
acceleration for boats and other watercraft. They are commonly used in
high-performance racing boats, as well as in commercial and recreational
vessels.
- Aviation:
Superchargers are used in aircraft engines to improve performance at high
altitudes. They help to compensate for the lower air pressure and density
at higher altitudes, which can reduce engine power output.
- Industrial:
Superchargers are used in industrial applications, such as gas turbines
and generators, to increase power output and efficiency. They are also
used in some manufacturing processes, such as blowing and injection
molding.
Overall, superchargers are used wherever increased power and
performance are needed, whether it's in the automotive, marine, aviation, or
industrial fields. They provide a quick and easy way to boost engine
performance without the need for major engine modifications.
Advantages and Disadvantages of Superchargers
Superchargers offer several advantages and disadvantages
depending on the specific application and performance goals. Here are some of
the main advantages and disadvantages of superchargers:
Advantages:
- Increased
Power: Superchargers increase the amount of air and fuel mixture that
enters the engine, resulting in more power and improved performance.
- Quick
Boost: Superchargers provide an immediate boost of power, without the need
for any engine modifications, making them a quick and easy way to increase
engine performance.
- Reliability:
Superchargers are generally more reliable than turbochargers because they
do not require exhaust gases to operate. This means that they are less
likely to experience lag or fail due to overheating.
- Lower
Exhaust Emissions: Superchargers do not require any additional fuel to
operate, which can result in lower exhaust emissions compared to
turbochargers.
Disadvantages:
- Cost:
Superchargers can be expensive to purchase and install, especially for
high-performance applications. They also require additional maintenance
and upkeep to ensure reliable performance.
- Increased
Engine Load: Superchargers increase the load on the engine, which can lead
to increased wear and tear over time. This can result in a shorter engine
lifespan and higher maintenance costs.
- Lower
Fuel Economy: Superchargers increase the amount of fuel consumed by the
engine, which can result in lower fuel economy and higher operating costs.
- Heat
Buildup: Superchargers generate a significant amount of heat, which can
lead to overheating and reduced engine performance if not properly
managed.
Overall, superchargers can provide significant gains in
engine performance but also come with some drawbacks. When considering a supercharger,
it's important to weigh the advantages and disadvantages carefully and choose a
system that is well-suited to the specific application and performance goals.
Supercharger vs Turbocharger
Superchargers and turbochargers are both forced induction
systems that increase engine power and performance, but they operate
differently and have some distinct advantages and disadvantages. Here are some
of the key differences between superchargers and turbochargers:
- Operation:
Superchargers are powered by a belt or electric motor that drives the
compressor, while turbochargers are driven by exhaust gases. This means
that superchargers provide an immediate boost of power, while
turbochargers can experience some lag before the boost kicks in.
- Efficiency:
Superchargers are generally less efficient than turbochargers because they
require engine power to operate. This means that they can have a negative
impact on fuel economy and engine performance, especially at lower RPMs.
Turbochargers, on the other hand, use exhaust gases to spin the
compressor, which can improve efficiency and performance.
- Cost:
Superchargers are generally more expensive to purchase and install than
turbochargers, especially for high-performance applications. They also
require additional maintenance and upkeep to ensure reliable performance.
- Heat:
Superchargers generate more heat than turbochargers, which can lead to
overheating and reduced engine performance if not properly managed.
- Power
Band: Superchargers provide a more linear power delivery, which can be
ideal for certain applications, while turbochargers can provide a more
sudden surge of power that can be more effective for high-performance
racing.
Overall, both superchargers and turbochargers offer significant gains in engine power and performance but operate differently and have some distinct advantages and disadvantages. The choice between a supercharger and a turbocharger will depend on the specific application and performance goals.
Read More: Turbocharger: Types, Working, Advantages, and More